12 research outputs found

    Information transfer by quantum matterwave modulation

    Get PDF
    Classical communication schemes that exploit wave modulation are the basis of the information era. The transfer of information based on the quantum properties of photons revolutionized these modern communication techniques. Here we demonstrate that also matterwaves can be applied for information transfer and that their quantum nature provides a high level of security. Our technique allows transmitting a message by a non-trivial modulation of an electron matterwave in a biprism interferometer. The data is encoded by a Wien filter introducing a longitudinal shift between separated matterwave packets. The transmission receiver is a delay line detector performing a dynamic contrast analysis of the fringe pattern. Our method relies on the Aharonov-Bohm effect and has no light optical analog since it does not shift the phase of the electron interference. A passive eavesdropping attack will cause decoherence and terminating the data transfer. This is demonstrated by introducing a semiconducting surface that disturbs the quantum state by Coulomb interaction and reduces the contrast. We also present a key distribution protocol based on the quantum nature of the matterwaves that can reveal active eavesdropping

    Quantenphysikalische Methoden zur Datenübertragung mit Elektronen-Materiewellen

    Get PDF
    Sichere Datenübertragung ist essentiell in unserer heutigen Zeit. Informationsaus- tausch bestimmt unser wirtschaftliches und auch unser persönliches Leben. Noch werden unsere Daten mit mathematischen Verschlüsselungsmethoden geschützt. Mit der stetigen Weiterentwicklung der Quantencomputer ist es jedoch nur noch eine Frage der Zeit bis jede Verschlüsselung dekodiert werden kann. Abhilfe schafft die Quantenkryptografie, in der die Verschlüsselung nicht auf Algorithmen sondern auf quantenmechanischen Grundgesetzen basiert. In den letzten Jahren hat sich die Quanten-Kommunikation durch einzelne bzw. verschränkte Photonen, stetig weiterentwickelt. In dieser Arbeit werden die Grundlagen geschaffen, dieses Gebiet auf Elektronen zu erweitern. Ein Ziel dieser Arbeit ist, einen supraleitenden Felde- mitter zu entwickeln. Dazu wurde in Tübingen die Technik etabliert, reproduzierbar Spitzen aus dem Supraleiter Niob herstellen zu können. Die Emission solcher Spit- zen wurde bei Raumtemperatur auf ihre Kohärenz untersucht und es wurde eine Halterung gebaut, mit der die Spitzen unterhalb der Sprungtemperatur gekühlt werden können. Im Rahmen eines Aufenthaltes am Lawrence Berkeley National Lab, USA, wurde ein Setup realisiert, womit die Emission einer supraleitenden Spitze untersucht werden kann. Dabei liegt das Augenmerk auf der Energiebreite und der Teilchenstatistik der Emission. Durch Korrelationsmessungen soll festgestellt werden, ob die supraleitende Spitze verschränkte Elektronenpaare emittiert. Das andere Ziel der Arbeit ist, eine neuartige, sichere Quantenmethode zur Datenübertragung zu entwickeln, durch Modulation einer Materiewelle in einem Biprisma-Interferometer. Der Sender ist dabei ein Wienfilter, der den Kontrast des Interferograms moduliert. Die Phasenlage oder die Position des Streifenmusters ändert sich dabei nicht. Der Empfänger ist ein Delay-Line-Detektor, der dynamisch den Kontrast misst. Für dieses Ziel wurde die Elektronik eines bestehenden Experiments erneuert und eine computergesteuerte Sendeeinheit gebaut. Eine Nachricht wurde erfolgreich übertra- gen und der Aufbau hinsichtlich Geschwindigkeit und Stabilität untersucht. Um die Sicherheit des Übertragungsschemas zu erhöhen, wurde eine Methode entwickelt mit Ähnlichkeiten zum BB84-Protokoll für Photonen. Der Sicherheitsaspekt beruht hierbei auf dem Welle-Teilchen-Dualismus, der Symmetrie der Wienkurve und der Dekohärenz. Abschließend wird die Sicherheit bei verschiedenen Abhörangriffen diskutiert und auch experimentell gezeigt, wie ein Angriff mit einem klassischen Instrument die Übertragung aufgrund von Dekohärenz verhindert.Secure data transmission is essential in the present time. The exchange of information determines not only our economical but also our personal lives. The secure data transfer is based on mathematical encryption but with the continuous development in quantum computing it is a question of time until every encryption can be decoded. Quantum cryptography can remedy this situation where security is based on fundamental quantum principles. In the last few years, quantum communication based on single and entangled photon transfer has improved significantly. The present work establishes fundamental research to extend these methods to electron matterwaves. One goal in this thesis was to develop a superconducting nanotip field emitter. Thereby, a technique was established in Tübingen to reproducibly prepare nanotips from the superconducting material niobium. The coherent emission of the field emitter at room temperature was studied and a tip holder for cooling the tip to the transition temperature was build. As part of a research trip to the Lawrence Berkeley National Lab, USA, a setup to investigate the superconducting properties of a niobium tip was established. The focus was set on the energy width and the emission statistics. The idea is to determine with electron correlation measurements if a superconducting tip emits entangled electrons, in the form of Cooper-Pairs. The other goal in this thesis was to develop a new secure quantum method for data transmission by modulating a matterwave in a biprism interferometer. Thereby, the message was binary encoded and transmitted by a Wien filter. It represents the sender and modulates the contrast of the interferogram without changing the phase or position of the fringes. The receiver is a delay-line-detector for a dynamical contrast analysis. To realize such an instrument, the electrical components of an existing setup were modified and a computer controlled interface was created. It includes the sending and receiving electronics and software. With the established setup it was possible to successfully send a message and the method was examined for transmission speed and stability. To improve the security of the technique, a transmission protocol, similar to the BB84-method for photons was developed. The security aspect is based on the wave-particle-duality, the symmetry of the Wien-curve and decoherence. Furthermore, the security aspect connected to various eavesdropper attacks is discussed in detail. It is also experimentally demonstrated how a tapping approach with a classical instrument would ultimately lead to decoherence and stop the communication

    Near-monochromatic tuneable cryogenic niobium electron field emitter

    Full text link
    Creating, manipulating, and detecting coherent electrons is at the heart of future quantum microscopy and spectroscopy technologies. Leveraging and specifically altering the quantum features of an electron beam source at low temperatures can enhance its emission properties. Here, we describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K. The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV due to tunable resonant tunneling field emission via localized band states at a nano-protrusion's apex and a cut-off at the sharp low-temperature Fermi-edge. This is an order of magnitude lower than for conventional field emission electron sources. The self-focusing geometry of the tip leads to emission in an angle of 3.7 deg, a reduced brightness of 3.8 x 10exp8 A/(m2 sr V), and a stability of hours at 4.1 nA beam current and 69 meV energy width. This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.Comment: to be published in Phys. Rev. Lett. (2022

    Data transmission by quantum matter wave modulation

    No full text
    Classical communication schemes exploiting wave modulation are the basis of our information era. Quantum information techniques with photons enable future secure data transfer in the dawn of decoding quantum computers. Here we demonstrate that also matter waves can be applied for secure data transfer. Our technique allows the transmission of a message by a quantum modulation of coherent electrons in a biprism interferometer. The data is encoded in the superposition state by a Wien filter introducing a longitudinal shift between separated matter wave packets. The transmission receiver is a delay line detector performing a dynamic contrast analysis of the fringe pattern. Our method relies on the Aharonov-Bohm effect but does not shift the phase. It is demonstrated that an eavesdropping attack will terminate the data transfer by disturbing the quantum state and introducing decoherence. Furthermore, we discuss the security limitations of the scheme due to the multi-particle aspect and propose the implementation of a key distribution protocol that can prevent active eavesdropping
    corecore